Сайт о релейной защите и цифровых технологиях в энергетике
Что такое Цифровая подстанция?
Сегодня идет много разговоров про технологию “Цифровая подстанция”. Когда-то это тема в России развивалась под эгидой ФСК ЕЭС для больших подстанций на сверхвысокие классы напряжения (220 кВ и выше), но сейчас ее можно найти и на более скромных объектах. Более того, самыми передовыми, в части применения цифровых технологий, являются несколько опытных подстанций 110 кВ, такие как ПС “Олимпийская” в Тюменьэнерго. Отчасти это связано с попыткой снизить затраты на опытные полигоны, отчасти попыткой снизить ущерб от возможной неправильной работы нового оборудования в реальной энергосистеме.
Вместе с тем не всегда понятно какую именно подстанцию можно считать полностью цифровой? Само внедрение цифровых технологий в энергетике началось более 20 лет назад с приходом первых микропроцессорных блоков РЗА, которые имели возможность интеграции в системы АСУ по цифровым каналам связи.
Но сегодня под цифровой подстанцией обычно понимается несколько другой объект.
С выходом в этом году измененных Норм технологического проектирования ПС 35-750 кВ ФСК (от 25.08.2017) можно разобраться с этим вопросом более подробно. Думаю, статья будет полезна не только интересующимся коммуникационными технологиями, но и простым релейщикам, многим из которых придется столкнуться с подобными объектами в будущем.
Начнем с определений НТП ФСК 2017 (здесь и дальше вырезки из документа с пояснениями)
Как мы видим, согласно позиции ФСК, цифровыми являются только те подстанции, где применено оборудование, поддерживающее стандарты МЭК-61850.
Стоит отметить, что стандарты МЭК-61850 изначально разрабатывались для работы внутри отдельно взятой подстанции, поэтому выдача информации на диспетчерский пункт производится другими протоколами (обычно МЭК-60870-5-104), что по всей видимости не противоречит термину “цифровая подстанция”
Самое важное на мой взгляд определение потому, что оно содержит требование применения оптических ТТ и электронных ТН, как самых передовых технологий из набора МЭК-61850 (SV). Получается, если подстанция не содержит этих элементов, то она не может считаться цифровой. Таким образом, в России пока нет ни одной цифровой подстанции потому, как ко всем существующим ОТТ и ЭТН подключена релейная защита, работающая только на сигнал (например, цифровой полигон Русгидро на Нижегородской ГЭС).
Таким образом, Цифровая подстанция – технология будущего.
Туда же. Все устройства должны поддерживать обмен по стандартам МЭК-61850-8-1 (MMS, GOOSE). Технология MMS предназначена для обмена с устройствами верхнего уровня (до сервера АСУ конкретной подстанции), а GOOSE – для горизонтального обмена между терминалами РЗА и контроллерами присоединений. Таким образом, дискретных входы и реле микропроцессорных устройств должны остаться в прошлом. Хорошая новость для тех, кто устал протягивать клеммы
А вот это очень интересная новость для проектировщиков – теперь не только строить, но и проектировать цифровые подстанции нужно согласно стандартам МЭК-61850.
По-сути, это означает, что вы должны проектировать не на бумаге или в Автокаде, с последующим переносом на бумагу, а сразу в цифровом виде. Т.е. на выходе у проектировщика должно получаться готовое задание на наладку РЗА и АСУ в цифровом виде (файл в формат языка описания SCL). Это позволит существенно сократить время на наладку, но возможно увеличит время на проектирование. Для того, чтобы время на разработку проекта не увеличилось нужно создать типовые проекты на каждое присоединение подстанции. Этим сейчас и занимается ФСК ЕЭС в рамках разработки национального профиля МЭК-61850.
Еще один момент – теперь для того, чтобы обеспечить работоспособность системы РЗА, нужно рассчитывать параметры локально-вычислительной сети (ЛВС). Т.е. РЗА избавиться от дискретных цепей, но будет зависеть от коммуникационной сети подстанции.
Все функции РЗА и АСУ на подстанции будут жестко стандартизированы и реализованы на совокупности логических узлов (logical node). Прочите еще раз абзац выше – думаю, в энергетике скоро начнет расти спрос на программистов и спецов по информационным технологиям) Как у вас дела с английским языком и абстрактным мышлением?
Теперь нужно будет внимательно следить за информационной безопасностью подстанции. Стандартизация имеет обратную сторону потому, как вирусы и другое вредоносное ПО пишется под наиболее популярные операционные системы.
“Устаревшие” протоколы передачи данных применять будет можно, но только при серьезном обосновании.
Какие можно сделать выводы из данного документа?
Пожалуй, я в этот раз не буду делать никаких выводов потому, что не являюсь экспертом в этих технологиях.
А что думаете вы? Пойдет Цифровая подстанция “в массы”?
Цифровые подстанции. Российские и зарубежные: НТД, опыт, примеры
СОДЕРЖАНИЕ
1. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
Цифровая подстанция (ЦПС) – автоматизированная подстанция, оснащенная взаимодействующими в режиме единого времени цифровыми информационными и управляющими системами и функционирующая без присутствия постоянного дежурного персонала [п.3.27, СТО 34.01-21-004-2019].
Цифровая подстанция (ЦПС по терминологии НТП ПС 2017) – это подстанция с высоким уровнем автоматизации, в которой практически все процессы информационного обмена между элементами ПС, а также управление работой ПС осуществляются в цифровом виде на основе стандартов серии МЭК 61850 [п.3 СТО 56947007-29.240.10.248-2017].
Цифровой питающий центр – цифровая подстанция 110-220 кВ и (или) узловая цифровая подстанция с высшим напряжением 35 кВ, от РУ СН и НН которой электрическая энергия распределяется по электрической сети [п.3.28, СТО 34.01-21-004-2019]
Цифровая электрическая сеть – Организационно-техническое объединение электросетевых объектов, оснащенных цифровыми системами измерения параметров режима сети, мониторинга состояния оборудования и линий электропередачи, защиты и противоаварийной автоматики, сетевого и объектового управления, информационный обмен между которыми осуществляется по единым протоколам с обеспечением синхронизации по времени [п.3.29, СТО 34.01-21-004-2019]
– совокупность средств вычислительной техники, программно-вычислительного обеспечения и средств создания и заполнения машинной информационной базы при вводе системы в действие, достаточных для выполнения одной или более задач АСУ ТП [п.3, СТО 56947007-25.040.40.236-2016]
2. ОПИСАНИЕ СТРУКТУРЫ ЦИФРОВОЙ ПОДСТАНЦИИ
Термин «Цифровая подстанция» (ЦПС) обозначает особое (цифровое) построение и взаимодействие технологических систем подстанции (таких как РЗА, АСУ ТП, АИИС КУЭ и т.д.) внутри каждой системы, между системами, а также между системами и первичным оборудованием.
Работа и управление такими подстанциями базируется на программно-техническом комплексе цифровой подстанции (ПТК ЦПС), разделенном на структурные уровни (процесса, присоединения и подстанции), которые объединяются между собой посредством сегментов локально-вычислительной сети Ethernet.
УРОВЕНЬ ПОДСТАНЦИИ
шина подстанции
УРОВЕНЬ ПРИСОЕДИНЕНИЯ
шина процесса
УРОВЕНЬ ПРОЦЕССА
Сегменты локально-вычислительной сети (ЛВС) образуют шину процесса, объединяющую уровни процесса и присоединения, и шину подстанции, объединяющую уровни присоединения и подстанции.
Структурная схема ПТК цифровой подстанции
Нажмите для просмотра
Схема приводится для справок. Оригинал см.: СТО 34.01-21-004-2019
3. УРОВЕНЬ ПРОЦЕССА
НАЗНАЧЕНИЕ:
СОСТАВ:
В случае отсутствия у основного оборудования встроенного цифрового интерфейса для оцифровки сигналов используют устройства сопряжения с объектом (УСО):
Указанные устройства могут быть отдельными или объединенными в одном комбинированном устройстве.
УСО для оцифровки не требуется, если цифровой интерфейс изначально встроен в основное оборудование (например, сбор аналоговых сигналов выполняется напрямую с оптических трансформаторов тока и напряжения).
Оба варианта соответствуют СТО 34.01-21-004-2019 [см. п.5.2.1].
На практике часто встречаются решения где устройства уровня процесса совмещены с устройствами уровня присоединения (подробнее см. подраздел e)
СПОСОБ ПЕРЕДАЧИ ДАННЫХ:
От основного оборудования до преобразователей аналоговых и дискретных сигналов (ПАС и ПДС) информация передается по контрольному кабелю с медными жилами. ПАС и ПДС стремятся установить максимально близко к основному оборудованию.
Далее от ПАС и ПДС по волокно-оптическим кабельным линиям информация поступает в коммутаторы шины процесса.
Аналоговая информация в цифровом виде передается в виде потока данных SV-поток.
SV-поток состоит из кадров Ethernet в соответствии со спецификацией МЭК 61850-9-2LE.
В соответствии со спецификацией МЭК 61850-9-2LE с учетом МЭК 61869:
Дискретная информация в цифровом виде передается с использованием протокола МЭК 61850-8-1 GOOSE, MMS.
4. УРОВЕНЬ ПРИСОЕДИНЕНИЯ
НАЗНАЧЕНИЕ:
СОСТАВ:
СПОСОБ ПЕРЕДАЧИ ДАННЫХ:
Мгновенные значения тока и напряжения принимаются ИЭУ по протоколу МЭК 61850-9-2 SV по шине процессов по волокно-оптическим линиям связи.
Обмен дискретной информацией с устройствами уровня процесса и другими устройствами уровня присоединения происходит по протоколу МЭК 61850-8-1 GOOSE по волокно-оптическим линиям связи.
5. УРОВЕНЬ ПОДСТАНЦИИ
НАЗНАЧЕНИЕ:
СОСТАВ:
Данный уровень должен быть образован серверами, объединенными в отказоустойчивый кластер, на платформе виртуализации которого работают сервера и АРМ уровня подстанции.
СПОСОБ ПЕРЕДАЧИ ДАННЫХ:
Сервера уровня подстанции взаимодействуют с устройствами уровня присоединения по ЛВС шины подстанции, используя сервисы клиентсерверного обмена в соответствии с МЭК 61850-8-1, обмен файловой информацией производиться с использованием сервисов файлового обмена в соответствии с МЭК 61850-8-1.
Для информационного обмена ЦПС с вышестоящими уровнями управления (ЦУС) и бизнес-аналитики для передачи оперативной и неоперативной информации в обоих направлениях сервера ССПИ должны поддерживать сервисы клиент-серверного обмена в соответствии с МЭК 618508-1.
Для информационного обмена с существующими (унаследованными) SCADA системами, не имеющими возможности клиент-серверного обмена в соответствии с МЭК 61850-8-1, сервера ССПИ должны в том числе поддерживать протокол МЭК 60870-5-104 [п.5.2.3, СТО 34.01-21-004-2019].
6. СОВМЕЩЕНИЕ И РАЗДЕЛЕНИЕ УРОВНЕЙ ПРОЦЕССА, ПРИСОЕДИНЕНИЯ И ПОДСТАНЦИИ
В соответствии с [п.5.2.8, СТО 34.01-21-004-2019], учитывая текущий технологический уровень и отработанные технологии, обеспечивается надежное и эффективное применение следующих технических решений:
7. ШИНА ПРОЦЕССА
Варианты топологии локально-вычислительной сети шины процесса [п.5.2.4, СТО 34.01-21-004-2019]:
Основные требования в соответствии с [п.5.2.4, СТО 34.01-21-004-2019]:
Принципиальная схема подключения полевых устройств к ЛВС шины процесса
Нажмите для просмотра
8. ШИНА ПОДСТАНЦИИ
Топология локально-вычислительной сети шины подстанции в пределах каждой из резервируемых сетей PRP должна обеспечивать для коммутаторов резервирование сети Ethernet на 2-ом уровне модели OSI с использованием протоколов RSTP, MRP. [п.5.2.4, СТО 34.01-21-004-2019].
Основные требования в соответствии с [п.5.2.5, СТО 34.01-21-004-2019]:
9. ПРОТОКОЛЫ ПЕРЕДАЧИ ДАННЫХ
Рекомендуется в части применения протоколов передачи данных (и применении соответствующего оборудования) руководствоваться приведенной ниже таблицей [п.5.2.8, СТО 34.01-21-004-2019]:
Класс напр яжения РУ
Протоколы передачи данных
Примечания
6, 10, 20 кВ
MMS, GOOSE
Протокол SV применяется только для вводных ячеек РУ
MMS, GOOSE
Протокол SV применяется для вводных ячеек РУ.
Применение протокола SV для измерений в рамках РУ может быть применено при дополнительном обосновании
MMS, GOOSE, SV
10. ВИРТУАЛИЗАЦИЯ ОБОРУДОВАНИЯ УРОВНЯ ПРИСОЕДИНЕНИЯ
Для разделения трафика (РЗА, АСУТП, АИИС КУЭ, видеонаблюдение, связь и др.), совместно использующего среду передачи, а также с целью повышения безопасности, должна использоваться технология виртуальных локальных сетей (VLAN). Разделение трафика по VLAN должно выполняться на стадии проектирования объекта с учетом приоритезации и логической сегрегации трафика. При необходимости, связь между VLAN должна осуществляться через соответствующие маршрутизаторы [п.8.1, СТО 34.01-21-004-2019].
11. ОСОБЕННОСТИ ПОСТРОЕНИЯ РЗА ЦИФРОВЫХ ПОДСТАНЦИЙ
На цифровых подстанциях РЗА является одной из подсистем ПТК ЦПС, функционирующей на уровне присоединения и подстанции.
На уровне «Присоединения» РЗА организуется на базе интеллектуальных электронных устройств (ИЭУ), являющихся специализированными промышленными компьютерами (в качестве них могут выступать терминалы РЗА, выполняющие функции контроллера присоединения, контроллеры ячеек). Между собой устройства обмениваются данными по шине процесса, аналогично происходит и обмен информацией с первичными преобразователями дискретных и аналоговых сигналов.(ПДС и ПАС):
В качестве первичных датчиков цифровых измерительных трансформаторов для цифровой ПС могут использоваться оптические датчики тока и напряжения на основе магниточувствительного оптоволокна, либо электромагнитные ТТ, электромагнитные или емкостные ТН [п.20.2, СТО 34.01-21-004-2019].
При реконструкции ПС допускается использовать измерительные ТТ и ТН с аналоговым выходом с использованием цифровых преобразователей при соответствующем экономическом обосновании [п.20.3, СТО 34.01-21-004-2019].
Программное обеспечение, установленное на уровне вычислительной сети ПТК цифровой ПС, должно представлять собой модульное программное обеспечение, в котором каждый программный модуль отвечает за минимальную функцию (виртуальное реле или логический узел в терминах в соответствии с требованиями МЭК 61850) [п.8.12, СТО 34.01-21-004-2019].
Из комбинации программных модулей может быть составлена необходимая функция защиты и (или) автоматизации, при этом уровень вычислительной сети ПТК цифровой ПС представляет собой совокупность обеспечивающих функционирование виртуальных устройств защиты и управления [п.8.13, СТО 34.01-21-004-2019].
Все связи между устройствами и описание ИЭУ должны быть представлены в виде SCD файла, а логические узлы с привязкой к элементам однолинейной схемы в виде SSD файла, разрабатываемых в специализированных программах.
На базе нескольких производителей, в том числе ООО «ЛИСИС», «ДЭП», «Микроника»
[ подробнее ]
ПП 500 кВ Тобол
(г.Тобольск)
На базе нескольких производителей, в том числе ООО НПП «ЭКРА», Siemens
[ подробнее ]
ПС 110 кВ Южная
(г.Череповец)
На базе нескольких производителей, в том числе ООО НПП «ЭКРА», ООО «ЛИСИС»
Примеры зарубежных цифровых подстанций
Наименование объекта
Примечания
ПС 110 кВ Приречная
(Республика Беларусь)
На базе оборудования General Electric
[ подробнее ]
ПС 225/90/20кВ «Блоко» («Blocaux»)
(Франция)
На базе оборудования General Electric
Ссылки на информационные ресурсы по теме «Цифровая подстанция»
Наименование
Примечания
«Цифровая подстанция»
Электронный журнал
Специализированный информационный ресурс по цифровым подстанциям
[ подробнее ]
ООО НПП «ЭКРА»
презентация
Структура цифровой подстанции. Особенности построения и надежность
Опыт реализации проектов Цифровых подстанций
Проектирование сети ЦПС на примере ПС Медведевская
[ подробнее ]
ООО «ЛИСИС»
презентация
Реализация системы защиты и управления цифровой подстанции на базе программного комплекса iSAS [ подробнее ]
ABB
презентация
Внедрение Цифровых подстанций
[ подробнее ]
NR Electric Co., Ltd
презентация
Цифровая подстанция
[ подробнее ]
АО «Электронмаш»
презентация
Цифровые подстанции
1 Kомментарий
Это самый лучший материал для изучения цифровых подстанций. В отличие от других описаний, здесь приводится полное систематизированное представление об архитектуре ЦПС с указанием ссылок на стандарты СТО. Такой материал можно использовать обучающимися по направлению Электроэнергетика и электротехника.
Цифровая подстанция – важный элемент интеллектуальной энергосистемы
В 2017 году тенденция перехода на цифровые технологии активно проявляется во всех жизненных процессах человека. В преддверии Четвертой промышленной революции, переход на цифровизацию рабочих процессов затронул и электроэнергетическую отрасль. Хотя идеи применения цифровых технологий в системах сбора и обработки информации, управления и автоматизации подстанций появились еще 15 лет назад, их стремительное развитие началось только недавно. Практически все ведущие фирмы электроэнергетической отрасли активно работают в этом направлении. Расширяется количество теоретических и практических исследований, появляются новые международные стандарты, образцы оборудования, опытные полигоны. Это открывает возможности инновационных подходов к решению задач автоматизации и управления энергообъектами, позволяя создать подстанцию нового типа — цифровую подстанцию (ЦПС). В данной статье мы подробно рассмотрим, что же такое «Цифровая подстанция», почему её так активно обсуждают и какие решения она предлагает.
В настоящее время в энергетической отрасли существует большое разнообразие точек зрения к тому, что именно понимать под термином «Цифровая подстанция». Сейчас разрабатывается общая концепция программно-аппаратного комплекса для успешного развития автоматизации процессов передачи, преобразования и распределения электроэнергии в масштабах ЕНЭС (Единая национальная электрическая сеть). Со времени начала разработок в отечественной электроэнергетике проектов автоматизированной системы управления технологическими процессами подстанций (АСУ ТП ПС), произошло существенное развитие аппаратных и программных средств систем управления для применения на электрических подстанциях. Появились высоковольтные цифровые трансформаторы тока и напряжения; разрабатывается первичное и вторичное электросетевое оборудование со встроенными коммуникационными портами; производятся микропроцессорные контроллеры, оснащенные инструментальными средствами разработки, на базе которых возможно создание надежного программно-аппаратного комплекса ПС; принят международный стандарт МЭК 61850, регламентирующий представление данных о ПС как объекте автоматизации, а также протоколы цифрового обмена данными между микропроцессорными интеллектуальными электронными устройствами (IED) ПС, включая устройства контроля и управления, релейной защиты и автоматики (РЗА), противоаварийной автоматики (ПА), счетчики электроэнергии и т.д.
Все это создает предпосылки для построения подстанции нового поколения – цифровой подстанции, в которой организация всех потоков информации при решении задач мониторинга, анализа и управления осуществляется в цифровой форме.
Актуальность использования Переход к передаче сигналов в цифровом виде на всех уровнях управления подстанцией позволит создать технологическую инфраструктуру для внедрения информационно-аналитических систем, снизить ошибки недоучета электроэнергии, уменьшить капитальные и эксплуатационные затраты на обслуживание подстанции, а также повысить электромагнитную безопасность и надежность работы микропроцессорных устройств. Внедрение систем, удовлетворяющих стандарту МЭК 61850 «Сети и системы связи на подстанциях», обеспечивает более высокую скорость и безопасность передачи информации, взаимозаменяемость отдельных компонентов системы, повышение надежности системы.
НОВАЯ ПАРАДИГМА«ЦИФРОВОЙ ПОДСТАНЦИИ»
Несмотря на то, что тенденция перехода на цифровые технологии в системах сбора и обработки информации, управления и автоматизации подстанций наметилась ещё более 15 лет назад, первая в мире цифровая подстанция была запущена лишь в 2006 году в Китае. Сегодня в данном направлении активно работают ведущие компании-производители электроэнергетической отрасли по всему миру. Развитие электроэнергетики в последние годы обусловлено фактором объединения электросетевой и информационной инфраструктуры. Цифровая подстанция – это элемент активно-адаптивной (интеллектуальной) электросети с системой контроля, защиты и управления, основанной на передаче информации в цифровом формате. Несмотря на то, что эта тема является относительно новой, в настоящее время на планете насчитывается уже более 100 ЦПС в Китае, США, Канаде и других странах. В частности, при содействии Министерства энергетики России, в лице Российского энергетического агентства уже в 2014 году, в Париже на международной выставке CIGRE-2014 демонстрировалось совместное техническое решение отечественных компаний, предназначенное для автоматизации подстанций по технологии «Цифровая подстанция».
Предпосылки Независимо от своего назначения все сети на планете становятся более мощными и более сложными. В том числе в геометрической прогрессии растут объёмы информационных потоков, обеспечивающих управление электросетевыми объектами, мониторинг их технического состояния, контроль качества электроэнергии, а также её коммерческий учёт. Это, в свою очередь, влечёт всё большее применение интеллектуальных электронных устройств, которых с каждым днем на объекте становится всё больше. Зачастую такие устройства применяют различные стандарты передачи данных, что затрудняет их совместную работу и, более того, начинает тормозить развитие электроэнергетики, а значит, и промышленности в целом. Это касается не только России, но и любых промышленно развитых стран. В общем в электроэнергетике настал момент, когда необходимо пересмотреть сами принципы построения энергетической инфраструктуры, а не совершенствовать оборудование в старой парадигме. Предпосылкой к появлению отечественного решения стало активное развитие технологии «Цифровая подстанция» – появление стандартов, описывающих информационную модель подстанции и протоколы обмена между её элементами, а также оборудования, поддерживающего эти протоколы. Суть нового подхода – изменение архитектуры построения систем защиты и управления подстанциями, основанное на цифровой обработке данных.
«Цифровая подстанция», позволяет получить единый цифровой поток данных, характеризующий состояние управляемого объекта. Это позволяет абстрагироваться от существующей парадигмы построения системы защиты и управления подстанцией, при которой каждая функция автоматизации выполняется отдельным устройством, и перейти к программной платформе, размещаемой на универсальных аппаратных устройствах и имеющей свободное распределение функций. Так появляется возможность получать решения, имеющие как полностью распределённую, так и централизованную архитектуру. Кроме того, применение единой программной платформы, обеспечивающей реализацию и взаимодействие функций на основе международного стандарта, позволит в дальнейшем видоизменить рынок аппаратных устройств для построения систем защиты и управления подстанцией и перейти к рынку функциональных алгоритмов. Основные элементы, которые позволили спроектировать подобное решение, базируются на собственных разработках двух компаний: цифровые оптические измерительные трансформаторы компании «Профотек» и цифровая система защиты и управления компании «ЛИСИС». Это уникальный альянс российских компаний, которые предлагают эффективное решение, не имеющее сегодня аналогов в мире.
Переход к передаче сигналов в цифровом виде на всех уровнях управления ПС позволит получить целый ряд преимуществ, в том числе:
ЦЕЛИ СОЗДАНИЯ
УМЕНЬШЕНИЕ КАПИТАЛЬНЫХ ЗАТРАТ – уменьшение затрат на кабельную продукцию и кабельные сооружения; – уменьшение стоимости терминалов (унификация аппаратной части, замена модулей ввода на цифровые интерфейсы); – уменьшение площади земельных участков, необходимых для обустройства ПС (применение оптических цифровых ТТ и ТН, современного микропроцессорного вторичного оборудования даст возможность уменьшить); – увеличение срока службы силового электрооборудования (расширенная диагностика); – уменьшение затрат на проектирование, монтаж и пусконаладку (уменьшение кол-ва кабелей, уменьшение кол-ва оборудования, расширение возможностей по типизации проектных решений в части шкафного оборудования и цифровых связей).
УМЕНЬШЕНИЕ ЭКСПЛУАТАЦИОННЫХ ЗАТРАТ (на техобслуживание) – упрощение эксплуатации и обслуживания (постоянная расширенная диагностика в режиме реального времени, в т.ч. метрологических характеристик; сбор и отображение исчерпывающей информации о состоянии и функционировании ПС); – увеличение точности измерений (особенно при токах менее 10-15%Iн) и увеличение благодаря этому точности учета электроэнергии и точности ОМП; – сокращение возможности появления дефектов типа «земля в сети постоянного тока» (сокращение размерности СОПТ ввиду использования цифровых оптических связей); – сокращение кол-ва внезапных отказов основного электрооборудования и связанных с ними штрафов за недоотпуск электроэнергии и нарушений производственного цикла (расширенная диагностика всего комплекса технических средств ЦПС); – уменьшение количества сбоев, неправильной работы, отказов РЗА (применение оптических кабелей вместо медных повысит электромагнитную совместимость современного вторичного оборудования – микропроцессорных устройств РЗ и автоматики); – повышение алгоритмической надежности функционирования РЗА (отсутствие насыщения и возможность измерения апериодической составляющей у оптических цифровых ТТ позволит упростить и усовершенствовать алгоритмы РЗА); – уменьшение потребления по цепям переменного тока и напряжения (в результате применения оптических ТТ и ТН).
Архитектура цифровых подстанций
А. Уровень процесса Работа цифровой подстанции основана на архитектуре, которая позволяет проводить эксплуатационные измерения в реальном времени по данным от первичной системы. Эти данные получаются с помощью датчиков, встроенных в первичную систему. Обмен между устройствами, происходит по результатам измерений базирующихся на «шине процесса». Самое главное в том, что интеллектуальные устройства и системы могут сразу обработать эти оперативные данные в пределах подстанции.
B. Защита и контроль Устройства между шиной процесса и станционной шиной исторически определены как «вторичное оборудование». В цифровой подстанции эти устройства являются интеллектуальными электронными устройствами, которые взаимодействуют с потоками через шину процесса и также с равноуровневыми устройствами в стойках терминалов, с другими терминалами и цифровой системой управления через шину станции.
C. Объекты контроля станции Некоторые объекты на подстанции могут требовать обмена всеми или частью этих предварительно обработанных данных. Одна или несколько рабочих станций, руководствуясь инструкциями (указаниями) региональных диспетчеров, может использоваться в качестве инженерной для конфигурирования терминалов, или для локальной концентрации и архивации данных энергосистемы. Для онлайн мониторинга состояния могут использоваться специализированные станции предупреждения (сигналов аварии), учитывающих историю по базе данных каждого основного устройства.
ОСНОВНЫЕ ПРИНЦИПЫ СОЗДАНИЯ
Переход на цифровые (в основном – оптические) технологии съема информации и передачи команд управления – возможность «замены на ходу» источника сигнала и тем самым – повышение надежности функционирования релейных защит; – увеличение быстродействия (не требуется защита «от дребезга», уменьшение времени срабатывания исполнительной части за счет оптических IGBT-модулей, уменьшение времени выявления аварийного режима); – улучшение условий в части безопасного производства работ и электромагнитной совместимости (благодаря оптическим связям нет выноса потенциала с ОРУ); – развитие средств и методов непрерывной диагностики (контроль деградации характеристик, контроль готовности к выполнению операций, контроль метрологических характеристик); – расширение количества функций, реализуемых в каждом терминале; – перенос части расчетно-диагностических задач в интерфейсные модули (Smart-IED). Двухэтапность реализации ЦПС
Этап №1: Использование существующего основного оборудования, к которому добавляется интерфейсный цифровой интеллектуальный модуль (как правило, размещаемый в помещении) на базе IEC 61850-8.1 и IEC 61850-9.2. Возможно корректировка состава и типа применяемых датчиков. Получение опыта эксплуатации. Разработка всей номенклатуры устройств РЗА, ПА, измерений с интерфейсами IEC 61850-8.1 и IEC 61850-9.2.
Этап №2: Существенная модернизация основного электрооборудования с интеграцией в него специализированных цифровых необслуживаемых датчиков, полевых контроллеров, твердотельных исполнительных модулей. Расширение объема задач, выполняемых интерфейсным модулем. Доработка всех компонентов ЦПС с учетом опыта эксплуатации.
И, все-таки, в России процесс внедрения цифровых подстанций однозначно пошел, электроэнергетический сектор уже подходит к введению проектов ЦПС. Планируется поставка некоторых элементов ЦПС на подстанции «Федеральной сетевой компании», причем применение технологий ЦПС на выбранных энергетических объектах будет происходить совместно с созданием традиционных информационно-управляющих систем подстанций, что вызовет некоторые сложности в оценке целесообразности перехода ЕНЭС на цифровые подстанции. В данный момент осуществляется сразу несколько проектов цифровых подстанций, заслуживающих повышенного внимания, например: «Цифровая подстанция» на базе «НТЦ ФСК ЕЭС», а также кластер «Эльгауголь».
Международная конференция и выставка «Цифровая подстанция. Стандарт IEC 61850»
С 3 по 5 октября в АО «НТЦ ФСК ЕЭС» состоится Международная конференция и выставка «Цифровая подстанция. Стандарт IEC 61850».
Конференция проводится в соответствии с cоглашением, подписанным на 46 сессии СИГРЭ, в рамках анонсированной Правительством России программы по созданию «Цифровой экономики Российской Федерации» при поддержке и с участием руководства АО «НТЦ ФСК ЕЭС», ПАО «ФСК ЕЭС», а также компании DNV GL (правопреемник компании КЕМА), Российского национального комитета СИГРЭ и является важным отраслевым форумом специалистов в области разработки, проектирования и эксплуатации «Цифровых подстанций». Главная тема конференции: «Обеспечение совместной работы аппаратуры технологических систем (защита, автоматика, измерение и управление) различных производителей, разработанной в соответствии с технологией «Цифровая подстанция».
Портал RusCable.Ru является интернет-партнером РНК СИГРЭ и, совместно с партнером конференции — научно-техническим журналом РУМ (Руководящие материалы по проектированию и эксплуатации электрических сетей), оказывает информационную поддержку мероприятия. Наши журналисты посетят мероприятие, пообщаются со специалистами и представителями компаний, реализующими «Цифровую подстанцию». В скором времени вас ждёт подробный и интересный сюжет, продолжающий эту статью, в котором мы составим подробно расскажем о положении вещей в развитии этого направления, о текущих и планируемых проектах по введению «Цифровой подстанции».